
All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 11

CMSC 426

Principles of Computer Security

Buffers and Assembly Language

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 2

Announcement: Note Taker Needed

A peer note taker has been requested for this class. A peer note taker is a

volunteer student who provides a copy of his or her notes for each class session

to another member of the class who has been deemed eligible for this service

based on a disability. Peer note takers will be paid a stipend for their service.

Peer note taking is not a part time job but rather a volunteer service for which

enrolled students can earn a stipend for sharing the notes they are already taking

for themselves.

If you are interested in serving in this important role, please fill out a note taker

application on the Student Disability Services website or in person in the SDS

office in Math/Psychology 212.

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 3

Last Class We Covered

 Buffer overflow basics

 How the stack works

 Overflowing the stack buffer

 Example in action

 Vulnerable code

 Finding vulnerable code

 Avoiding vulnerable code

 Exploiting stack overflows

 Shellcode

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 4

Any Questions from Last Time?

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 5

Today’s Topics

 Assembly review

 Cdecl calling convention

 In-depth explanation of stack buffer overflow exploits

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 6

Assembly Review

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 7

x86 Registers
 EAX, EBX, ECX, EDX

 Used for general data storage

 ESI, EDI

 Source and destination registers

 (Mostly used for string and buffer operations)

 ESP, EBP

 Stack and base pointer

 (Used for keeping track of stack frames and operations)

 EIP

 Instruction pointer (points to current instruction being executed)

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 8

PUSH in Assembly Language

 What does PUSH actually do?

 PUSH myVal

 SUB ESP, 4

 MOV [ESP], myVal

Subtract 4 from the stack pointer
(“make room” on the stack)

Copy the value into that
new space on the stack

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 9

POP in Assembly Language

 What does POP actually do?

 POP myRegister

 MOV myRegister, [ESP]

 ADD ESP, 4

Add 4 to the stack pointer
(move the stack back “up”)

Copy the value off the
stack into the register

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 10

Quick Note – Stack Growth

 The stack grows down

 The ESP is the “stack pointer”

 Keeps track of the “top” of the stack (really the bottom)

 The boundary between actual data and junk on the stack

 When the ESP is incremented, we are going UP the stack

 This means something is being removed from the stack

 When the ESP is decremented, we are going DOWN the stack

 This means space is being added to the stack for new information

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 11

CALL in Assembly Language

 What does CALL actually do?

 CALL myFunc

 PUSH &nextInstruction

 SUB ESP, 4

 MOV [ESP], &nextInstruction

 JMP myFunc

Jump to where the function
you’re calling resides in memory

Push the address in memory
you’ll want to return to

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 12

RET in Assembly Language

 What does RET actually do?

 RET

 POP EIP

 Trusting that whatever’s at the top

of the stack is the return address

 When you execute the next instruction

it looks at EIP to see what to do next

Pop the return address into EIP

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 13

Cdecl

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 14

What is Cdecl?

 The calling convention for the C programming language

is called “cdecl”

 Calling conventions determine

 Order in which parameters are placed onto the stack

 Which registers are used/preserved for the caller

 How the stack in general is handled

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 15

Simple Cdecl Example – Code

 What actually happens

on the stack when this

program is run?

 What variables are

allocated first?

 How does the stack

grow?

int myFunc(char *par1, int par2)

{

char local1[64];

int local2;

return 0;

}

int main(int argc, char **argv)

{

myFunc(argv[1], atoi(argv[2]);

return 0;

}

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 16

Simple Cdecl Example – Calling

Main’s Stack Frame

par2

par1

Return Address

local1

local2

Main’s EBP

 PUSH par2

 PUSH par1

 CALL myFunc

 PUSH EBP

 MOV EBP, ESP

 SUB ESP, 68

<- ESP

<- EBP

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 17

Simple Cdecl Example – Returning

 MOV ESP, EBP

 POP EBP

 RET

Main’s Stack Frame

par2

par1

Return Address

local1

local2

Main’s EBP

<- ESP

<- EBP

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 18

Example

Stack Buffer Overflow Exploit

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 19

Overflow Exploit Goal

 In this example, the goal is privilege escalation

 Gaining privileges you didn’t have before

 Note that the vulnerable executable has the SUID bit set

 Linux will run this program with the user ID and permissions of its

owner (in this case, root)

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 20

Overflow Exploit Source Code (part 1)

 Simple main() for calling

a function with an

overflow exploit in it

int main(int argc, char *argv[]) {

if (argc != 2){

printf("Invalid number of arguments\n");

exit(1);

}

bof(argv[1]);

printf("Completed\n");

return 0;

}

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 21

Overflow Exploit Source Code (part 2)

 What are we trying to

exploit with this code?

 Using the unsafe function
strcpy

 If str is longer than

buff, this will cause an

overflow

int bof(char *str)

{

char buff[512];

strcpy(buff, str);

printf("The length of your ",

"string is %d\n",

strlen(buff));

return 0;

}

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 22

Stack Smashing

 The bof function tried to return to 0x41414141 (an invalid

address) and caused a segfault

 0x41 is ‘A’ in ASCII

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 23

Planning the Exploit

 We can control the address that the bof function returns to if

we pass it specially crafted input

 (Instead of screaming at it)

 The construction of the

input will be in this form:

NOP Sled Shellcode Return Addresses

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 24

Planning the Exploit

 We can control the address that the bof function returns to if

we pass it specially crafted input

 (Instead of screaming at it)

 The construction of the

input will be in this form:

 (Sizes are also semi to scale)

 512 bytes for the buffer is pretty huge

NOP Sled

Shellcode

Return Addresses

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 25

Shellcode

 Instructions with the purpose of opening a shell

 In this example, a root shell

 It can’t contain any NULL characters

 1) It’s being passed in as command line input

 2) strcpy will go until it sees a NULL character

 It’s often limited to a very small size

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 26

Return Addresses

 We need to figure out where the return address of bof is in

order to overwrite it with our own

 It’s a bit higher on the stack than the local variables

 We could do the math…

 (Easier to pretend math doesn’t exist)

 Or we can just include a bunch of copies of our return address

in our exploit and hope one overwrites it

 Always word aligned (so no “partial” overwrite)

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 27

Return Addresses

 We also need to decide what the value of our return address

should be

 We don’t know what the address of the shellcode is, but we

can estimate it

 ASLR == Address Space Layout Randomization

 Turning it off makes it easier to find/predict where things will be

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 28

NOP Sled

 Fill a large area of memory with NOP instructions before the

shellcode

 If our estimate points to anywhere in the NOP sled, we’ll end

up executing the shellcode

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 29

Putting it all together

NOP Sled Shellcode Return Addresses

 The return address of bof() is overwritten and the function

returns to somewhere in the NOP sled

 The NOP sled leads execution to the start of the shellcode

 The shellcode executes and we get a root shell

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 30

Writing the Exploit (Shellcode)

 Will explain how this works next time (opens a root shell)

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 31

Daily Security Tidbit

 Canadian passports have a neat security feature

 Can see more examples at

 https://imgur.com/gallery/3u8xP

