
All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 11

CMSC 426

Principles of Computer Security

Buffers and Assembly Language

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 2

Announcement: Note Taker Needed

A peer note taker has been requested for this class. A peer note taker is a

volunteer student who provides a copy of his or her notes for each class session

to another member of the class who has been deemed eligible for this service

based on a disability. Peer note takers will be paid a stipend for their service.

Peer note taking is not a part time job but rather a volunteer service for which

enrolled students can earn a stipend for sharing the notes they are already taking

for themselves.

If you are interested in serving in this important role, please fill out a note taker

application on the Student Disability Services website or in person in the SDS

office in Math/Psychology 212.

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 3

Last Class We Covered

 Buffer overflow basics

 How the stack works

 Overflowing the stack buffer

 Example in action

 Vulnerable code

 Finding vulnerable code

 Avoiding vulnerable code

 Exploiting stack overflows

 Shellcode

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 4

Any Questions from Last Time?

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 5

Today’s Topics

 Assembly review

 Cdecl calling convention

 In-depth explanation of stack buffer overflow exploits

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 6

Assembly Review

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 7

x86 Registers
 EAX, EBX, ECX, EDX

 Used for general data storage

 ESI, EDI

 Source and destination registers

 (Mostly used for string and buffer operations)

 ESP, EBP

 Stack and base pointer

 (Used for keeping track of stack frames and operations)

 EIP

 Instruction pointer (points to current instruction being executed)

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 8

PUSH in Assembly Language

 What does PUSH actually do?

 PUSH myVal

 SUB ESP, 4

 MOV [ESP], myVal

Subtract 4 from the stack pointer
(“make room” on the stack)

Copy the value into that
new space on the stack

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 9

POP in Assembly Language

 What does POP actually do?

 POP myRegister

 MOV myRegister, [ESP]

 ADD ESP, 4

Add 4 to the stack pointer
(move the stack back “up”)

Copy the value off the
stack into the register

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 10

Quick Note – Stack Growth

 The stack grows down

 The ESP is the “stack pointer”

 Keeps track of the “top” of the stack (really the bottom)

 The boundary between actual data and junk on the stack

 When the ESP is incremented, we are going UP the stack

 This means something is being removed from the stack

 When the ESP is decremented, we are going DOWN the stack

 This means space is being added to the stack for new information

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 11

CALL in Assembly Language

 What does CALL actually do?

 CALL myFunc

 PUSH &nextInstruction

 SUB ESP, 4

 MOV [ESP], &nextInstruction

 JMP myFunc

Jump to where the function
you’re calling resides in memory

Push the address in memory
you’ll want to return to

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 12

RET in Assembly Language

 What does RET actually do?

 RET

 POP EIP

 Trusting that whatever’s at the top

of the stack is the return address

 When you execute the next instruction

it looks at EIP to see what to do next

Pop the return address into EIP

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 13

Cdecl

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 14

What is Cdecl?

 The calling convention for the C programming language

is called “cdecl”

 Calling conventions determine

 Order in which parameters are placed onto the stack

 Which registers are used/preserved for the caller

 How the stack in general is handled

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 15

Simple Cdecl Example – Code

 What actually happens

on the stack when this

program is run?

 What variables are

allocated first?

 How does the stack

grow?

int myFunc(char *par1, int par2)

{

char local1[64];

int local2;

return 0;

}

int main(int argc, char **argv)

{

myFunc(argv[1], atoi(argv[2]);

return 0;

}

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 16

Simple Cdecl Example – Calling

Main’s Stack Frame

par2

par1

Return Address

local1

local2

Main’s EBP

 PUSH par2

 PUSH par1

 CALL myFunc

 PUSH EBP

 MOV EBP, ESP

 SUB ESP, 68

<- ESP

<- EBP

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 17

Simple Cdecl Example – Returning

 MOV ESP, EBP

 POP EBP

 RET

Main’s Stack Frame

par2

par1

Return Address

local1

local2

Main’s EBP

<- ESP

<- EBP

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 18

Example

Stack Buffer Overflow Exploit

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 19

Overflow Exploit Goal

 In this example, the goal is privilege escalation

 Gaining privileges you didn’t have before

 Note that the vulnerable executable has the SUID bit set

 Linux will run this program with the user ID and permissions of its

owner (in this case, root)

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 20

Overflow Exploit Source Code (part 1)

 Simple main() for calling

a function with an

overflow exploit in it

int main(int argc, char *argv[]) {

if (argc != 2){

printf("Invalid number of arguments\n");

exit(1);

}

bof(argv[1]);

printf("Completed\n");

return 0;

}

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 21

Overflow Exploit Source Code (part 2)

 What are we trying to

exploit with this code?

 Using the unsafe function
strcpy

 If str is longer than

buff, this will cause an

overflow

int bof(char *str)

{

char buff[512];

strcpy(buff, str);

printf("The length of your ",

"string is %d\n",

strlen(buff));

return 0;

}

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 22

Stack Smashing

 The bof function tried to return to 0x41414141 (an invalid

address) and caused a segfault

 0x41 is ‘A’ in ASCII

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 23

Planning the Exploit

 We can control the address that the bof function returns to if

we pass it specially crafted input

 (Instead of screaming at it)

 The construction of the

input will be in this form:

NOP Sled Shellcode Return Addresses

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 24

Planning the Exploit

 We can control the address that the bof function returns to if

we pass it specially crafted input

 (Instead of screaming at it)

 The construction of the

input will be in this form:

 (Sizes are also semi to scale)

 512 bytes for the buffer is pretty huge

NOP Sled

Shellcode

Return Addresses

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 25

Shellcode

 Instructions with the purpose of opening a shell

 In this example, a root shell

 It can’t contain any NULL characters

 1) It’s being passed in as command line input

 2) strcpy will go until it sees a NULL character

 It’s often limited to a very small size

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 26

Return Addresses

 We need to figure out where the return address of bof is in

order to overwrite it with our own

 It’s a bit higher on the stack than the local variables

 We could do the math…

 (Easier to pretend math doesn’t exist)

 Or we can just include a bunch of copies of our return address

in our exploit and hope one overwrites it

 Always word aligned (so no “partial” overwrite)

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 27

Return Addresses

 We also need to decide what the value of our return address

should be

 We don’t know what the address of the shellcode is, but we

can estimate it

 ASLR == Address Space Layout Randomization

 Turning it off makes it easier to find/predict where things will be

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 28

NOP Sled

 Fill a large area of memory with NOP instructions before the

shellcode

 If our estimate points to anywhere in the NOP sled, we’ll end

up executing the shellcode

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 29

Putting it all together

NOP Sled Shellcode Return Addresses

 The return address of bof() is overwritten and the function

returns to somewhere in the NOP sled

 The NOP sled leads execution to the start of the shellcode

 The shellcode executes and we get a root shell

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 30

Writing the Exploit (Shellcode)

 Will explain how this works next time (opens a root shell)

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 31

Daily Security Tidbit

 Canadian passports have a neat security feature

 Can see more examples at

 https://imgur.com/gallery/3u8xP

